Conotoxin Structure and Activity

 

 
Scientific infographic on how neurons signal to muscles to cause movement, and how cone snail conotoxin structure causes muscle paralysis by binding to membrane channel proteins, blocking neurotransmitter signals at the neuromuscular junction.
 

Client: Professor Derek Ng
Year: 2020
Media: Chimera, Adobe Illustrator, Adobe Photoshop


Cone snails produce a huge variety of conotoxins used to subdue their prey. This two-page spread is meant to show the structure-activity relationship of omega and alpha conotoxins, which cause rapid paralysis by targeting two important ion channels at the neuromuscular junction, preventing neural signals from reaching the muscle.

References


Academic Sources

Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. 2014. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 114:5815–5847. doi:10.1021/cr400401e.
Burden SJ. 2002. Building the vertebrate neuromuscular synapse. J Neurobiol 53:501–511. doi:10.1002/neu.10137.
Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK. 2004. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41:907–914. doi:10.1016/S0896-6273(04)00115-1.
Farr-Jones S, Miljanich GP, Nadasdi L, Ramachandran J, Basus VJ. 1995. Solution structure of ω-conotoxin MVIIC, a high affinity ligand of P-type calcium channels, using 1H NMR spectroscopy and complete relaxation matrix analysis. J Mol Biol 248:106–124. doi:10.1006/jmbi.1995.0205.
Gehrmann J, Alewood PF, Craik DJ. 1998. Structure determination of the three disulfide bond isomers of α-conotoxin GI: A model for the role of disulfide bonds in structural stability. J Mol Biol 278:401–415. doi:10.1006/jmbi.1998.1701.
Hirsch NP. 2007. Neuromuscular junction in health and disease. Br J Anaesth 99:132–138. doi:10.1093/bja/aem144.
Jin A-H, Muttenthaler M, Dutertre S, Himaya SWA, Kaas Q, Craik DJ, Lewiss RJ, Alewood PF. 2019. Conotoxins: Chemistry and biology. Chem rev 119:11510-11549. doi:10.1021/acs.chemrev.9b00207
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. 2007. Muscle and neuronal nicotinic acetylcholine receptors: Structure, function and pathogenicity. FEBS J 274:3799–3845. doi:10.1111/j.1742-4658.2007.05935.x.
Miyazawa A, Fujiyoshi Y, Unwin N. 2003. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949-955. doi:10.1038/nature01748
Moyes CD, Schulte PM. 2008. Neuron structure and function. In: Principles of animal physiology (2nd ed). San Francisco (CA): Pearson Benjamin Cummings.
Unwin N. 2005. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J Mol Biol 346:967–989. doi:10.1016/j.jmb.2004.12.031.
Unwin N, Fujiyoshi Y. 2012. Gating movement of acetylcholine receptor caught by plunge-freezing. J Mol Biol 422:617–634. doi:10.1016/j.jmb.2012.07.010.
Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M, Zhou Q, Yan N. 2016. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537:191–196. doi:10.1038/nature19321.

Visual References

Brewer R, Zych A. 2018. How do “killer snails” kill their victims? ScienceFriday. Accessed June 8, 2020. Available from: https://www.sciencefriday.com/educational-resources/how-do-killer-snails-kill-their-victims/
HHMI BioInteractive. 2009. Cone snail toxins and paralysis. HHMI BioInteractive. Accessed May 8, 2020. Available from: https://www.biointeractive.org/classroom-resources/cone-snail-toxins-and-paralysis
Oeggerli M. n.d. Deadly harpoon – Tip of the conus snail radula (Conus striatus). Micronaut. Accessed June 8, 2020. Available from: http://www.micronaut.ch/shop/deadly-harpoon-tip-of-the-conus-snail-radula-conus-striatus/
Reuvany E. 2019. How cone snail venom kills. Weizmann Wonder Wander. Accessed June 8, 2020. Available from: https://wis-wander.weizmann.ac.il/life-sciences/how-cone-snail-venom-kills